问题描述
已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。
输入格式
输入一个正整数N。
输出格式
输出一个整数,表示你找到的最小公倍数。
样例输入
9
样例输出
504
数据规模与约定
1 <= N <= 106。
按照常理来说,最大的应该是n, n-1, n-2这三个数,如果这三个数恰好互质,那再好不过。然而恰好当n为奇数时,这三个数互质。下面来解释下为什么。首先这三个数时连续的三个数。也就是n,n-1,n-2。因为n是奇数,所以奇偶奇不可能有2这个因数。那再看3,这三个连续的数最大相差的是2,然而我们知道如果n能被3整除那n+1,n+2(减去是一样的)就不能因为没加够一个3.同理如果n能被4整除那么n+1,n+2,n+3也都不能被4整除,因为没加够一个4.证毕。
再看若n是偶数,那很自然的想到吧n-2往后挪一个变成奇数n-3就好了。但是这里有个问题,如果n刚好能被3整除的话那么n-3也能。那就还要除去一个3.不划算。那不能挪后面的就把前面的挪一下吧。变成n-1,n-2,n-3。
1 | #include<iostream> |