A1072 Gas Station

A gas station has to be built at such a location that the minimum distance between the station and any of the residential housing is as far away as possible. However it must guarantee that all the houses are in its service range.

Now given the map of the city and several candidate locations for the gas station, you are supposed to give the best recommendation. If there are more than one solution, output the one with the smallest average distance to all the houses. If such a solution is still not unique, output the one with the smallest index number.

Input Specification:
Each input file contains one test case. For each case, the first line contains 4 positive integers: N (≤10
​3
​​ ), the total number of houses; M (≤10), the total number of the candidate locations for the gas stations; K (≤10
​4
​​ ), the number of roads connecting the houses and the gas stations; and D
​S
​​ , the maximum service range of the gas station. It is hence assumed that all the houses are numbered from 1 to N, and all the candidate locations are numbered from G1 to GM.

Then K lines follow, each describes a road in the format

P1 P2 Dist
where P1 and P2 are the two ends of a road which can be either house numbers or gas station numbers, and Dist is the integer length of the road.

Output Specification:
For each test case, print in the first line the index number of the best location. In the next line, print the minimum and the average distances between the solution and all the houses. The numbers in a line must be separated by a space and be accurate up to 1 decimal place. If the solution does not exist, simply output No Solution.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Sample Input 1:
4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2
Sample Output 1:
G1
2.0 3.3
Sample Input 2:
2 1 2 10
1 G1 9
2 G1 20
Sample Output 2:
No Solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#include<iostream>
#include<vector>
#include<cstring>
#include<cmath>
#define INF 0x3f3f3f
#define MAX 1020
using namespace std;
int n,m,k,ds;
int dis[MAX],g[MAX][MAX];
vector<int> pre[MAX],tmp,path;
int vis[MAX];
int mini=INF,lremain=INF;
#define INF 0x3f3f3f
void dij(int src){
fill(dis,dis+MAX,INF);
memset(vis,0,sizeof(vis));
dis[src]=0;
//循环n+m次 每一次占一个点(城堡) V S-v集合
for(int i=0;i<n+m;i++){
int min=INF,u=-1;
for(int j=1;j<=n+m;j++){
if(!vis[j]&&dis[j]<min){
min=dis[j];u=j;
}
}
if(u==-1) return;
vis[u]=true;
for(int v=1;v<=n+m;v++){
if(vis[v]||g[u][v]==INF) continue;
if(dis[u]+g[u][v]<dis[v]){
dis[v]=dis[u]+g[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if(dis[u]+g[u][v]==dis[v]){
pre[v].push_back(u);
}
}


}

}
void dfs(int u){
}
int getId(string s){
int ans=0;
bool flag=false;
for(int i=0;i<s.length();i++){
if(s[i]=='G'){
flag=true;
}
else ans=ans*10+s[i]-'0';
}
if(flag==true) return n+ans;
else return ans;

}
int main(){
// freopen("21.txt","r",stdin);
fill(g[0],g[0]+MAX*MAX,INF);
cin>>n>>m>>k>>ds;
int ansid=-1;
double ansA=INF,ansL=-1;
for(int i=0;i<k;i++)
{
string s1,s2;
int d;
cin>>s1>>s2>>d;
int u=getId(s1),v=getId(s2);
g[u][v]=g[v][u]=d;
}
for(int i=n+1;i<=n+m;i++){
dij(i);
int min=INF,u=-1;
double avg=0;
for(int j=1;j<=n;j++){
if(dis[j]<min){
u=j;
min=dis[j];
}
if(dis[j]>ds) {
min=-1;
break;
}
avg+=1.0*dis[j]/n;
}
// cout<<min<<" "<<avg<<endl;
if(min==-1) continue;
// if(min>ds) {
// continue;
// }


if(min>ansL){
ansid=i;
ansL=min;
ansA=avg;
}
else if(min==ansL){
if(avg<ansA){
ansid=i; //!
ansA=avg;
}
}



}

if(ansid==-1) cout<<"No Solution"<<endl;
else{
cout<<'G'<<ansid-n<<endl;
printf("%.1f %.1f\n",ansL,ansA);
}
}